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ABSTRACT 

Rapidity distributions for two particle inclusive reactions are 

calculated from the Nova model which has been successful at repro- 

ducing the single particle distributions. Particular attention is given 

to the 2rr- correlations in asp and pp collisions for which data are 

available n Good agreement with data provides further evidence for 

a strong clustering of secondaries in particle production at present 

machine energies, a feature inferred previously from the analysis 

of single particle distributions. We stress the importance of measur - 

ing the energy dependence of < n(n- 1) > , the quantity which normalizes 

the two particle distribution. A number of other features of correla- 

tion experiments are discussed. General properties of particle 

production are emphasized in reviewing the Nova model. 
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I. introduction. 

Inelastic processes represent approximately 80% of the total 

strong interaction cross section at high energy. However, the large 

number of potentially important kinematic variables necessary for a 

complete description of these processes has hampered progress 

toward their understanding. Finding good ways to display available 

data is a fascinating challenge. Advent of the inclusive approach (i-4) 

has simplified matters somewhat. Single particle inclusive cross 

sections may be described by only three kinematic variables, but 

even here, a particular choice of a given set must be made. These 

complications make it hard to approach particle production without 

some prejudices, even though one would wish to remain open to all 

suggestions obtainable from an unbiased contemplation of data. 

Fortunately, a motivated interest in one or a few variables may be 

rewarded by some insight and suggest further investigations. This 

has certainly been the case with the single-particle distributions, 

where rapidity yand transverse momentum squared pT2 distributions 

of one specific secondary are measured’), with everything else summed 

or averaged over. Single-particle distributions are quite accessible 

experimentally, and they appear to provide tests of asymptotically 

expected scaling properties. (I,21 Asymptotic limits and the approach 

to scaling have both been confronted in Regge theory’, and 
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its associated phenomenology. 7 
The next phase of inclusive phenome- 

nology is a study of two-particle inclusive distributions and possible 

correlations among produced secondaries. 

A number of features of single-particle inclusive spectra encourage 

the attempt to identify some dominant production mechanisms, which 

could serve as a basis for analyzing reactions in more detail. 4 

Focusing on specific production mechanisms could be useful for the 

complicated problem of two -particle correlations. Although such an 

approach risks loss of generality, it is clear that detailed calculations 

are necessary if progress is to be made. General arguments based 

on the use of sum rules 8 
have been developed, but their implications 

for data are as yet very weak, in particular for slow pions in the center 

of mass, where the cross section is largest. Energy-momentum 

conservation alone imposes little constraint on shapes of single and 

two -particle distributions . Because data on two-particle distributions 

are accumulating rapidly; (9-12) is should be extremely useful to have 

explicit model predicitions from which to view the data. 

Asymptotic predictions for two-particle correlations have already 

been studied in the framework of Regge, dual, and diffraction 

models. (13-16) In these models correlations are expected to decrease 

with increasing rapidity difference (Ay 2 2), but some models require 

a very large center of mass energy before detailed study is possible. 
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This is especially true of models which postulate relatively weak 

correlations among secondaries originating from different clusters 

along a multi-exchange chain. One may also use the Feynman gas 

analogy 
1, 16 

applicable when the rapidity distribution has become 

asymptotically uniform. In the gas, clustering fluctuations may occur 

which will lead to short -range correlations, and a definite correlation 

length in Ay. A problem in applying this analogy to present machine 

energies is that in several interesting cases the number of “gas 

molecules” involved, on the average j equals one to two (See Table I). 

In spite of the value of asymptotic approaches and formal analogies, 

presently available data must also be studied along different lines. 

A glance at the single-pion distributions already provides some 

model independent expectations for two-pion distributions. Figure 1 

shows the IT- distributions in 18. 5 GeV/ c JT+~ and r-p collisions. 9 

The shape in rapidity is narrow and Gaussian-like. In addition a strong 

leading particle effect is present in the r-p reaction. Whatever the 

reason for the Gaussian-like shape, the narrowness of the rapidity 

distribution indicates that the two-particle distribution will have its 

maximum when both rapidities are small, and hence, when the rapidity 

difference is small. The experimental evidence is for a prominent 

maximum at zero rapidity difference in the two TT- system. (10, 11) 

The double distribution (9912) 2 d o’dyldy2 peaks near y4 = 0 for any 

fixed y2 with the maximum shifting only lightly as a function of y2. 
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Thus d2c/dyldy2 displays much more information (9,12) 
than do/ d(Ay) 

which shows only a deceptive maximum near Ay = 0. A very interest- 

ing problem is to account for the narrowness of both the one- and two- 

pion distributions . 

The observed strength and distribution of the leading particle 

effects in srp and pp collisions indeed provide some understanding 

why the single-pion rapidity distributions are so narrow. (17,18) 

In manyevents, one of the initial particles is quasielastically scattered 

and carries off a sizable fraction of the energy. (49) The energy left to be 

shared among the remaining secondaries is small enough that produced 

pions tend to cluster at small rapidities. This is the weak inelasticity 

property which dominates production processes at present machine 

energy. (20) It finds a rationale in several theoretical approaches. 

Moreover, the rapid scaling of the invariant pion distributions at 

intermediate values of [ x / strongly suggests that pions which reach 

these intermediate values of 1 x 1 come from energy independent. 

production of low mass clusters. Very little more than this is needed 

for understanding single-particle distributions and, as discussed 

here, the correlation data. Since the mass of a cluster which gives 

two rr- must be relatively large, one would expect d2c/dy1dy2, to be 

narrower than do/dy. It is possible to construct a rather general 

model based on these features because the distribution of secondaries- ’ 

from each cluster is quite independent of reaction and particle-type, 
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a feature suggested by the nearly universal p T2 distributions observed 

experimentally. We emphasize that the general behavior of the corre- 

lations can be accounted for by these experimental features of particle 

production. With only a few more assumptions they are easily incor- 

porated into a specific model such as the Nova model. (21) 

The object of this paper is to show that a model which incorporates 

the key features already mentioned and thus reproduces the single- 

particle distributions very well, (21) can also account for the two- 

particle distributions. (12, 22) The shapes are basically those expected 

from the observed small inelasticity, the interpretation of the rapid 

scaling at intermediate [ x [ found in the model, and the general 

behavior ,of the pT2 distributions. (394) The very general clustering 

effect already inferred from the analysis of single distribution is 

enough to explain the two-particle correlation results now available. 

Two-particle data therefore provide further tests for some ideas 

which were less well probed by the single-particle distributions, 

expecially some of the details of particle production, but do not 

suggest specific additional effects. 

In this paper, we also emphasize the great value of obtaining 

experimental information on the energy dependence of a quantity 

which actually normalizes the two-particle distribution, namely 

<n (n-i)>. The analogous quantity in the single-particle case is the 

mean multiplicity, <n>, of the observed particle type. 



One of the most revealing and sensitive quantities which model calcu- 

(1.2) 

lations must account for is the energy dependence of the ratio, 

<n(n-l )>/ <n>2 for secondaries of a specific kind. (23) 

Calculations of IT-T- distributions are described in Sec. II. Strong 

correlations, already suggested by the single -particle distributions and 

observed in analyses of exclusive channels, are realized by 

associating most of the time the two observed pions ‘with the excita 

tions of either the beam or target particle into a resonance-like state 

(Nova) which decays subsequently by pion emission. The Nova model’i 

is reviewed briefly in the course of setting up the two-particle inclus - 

ive calculation. Specific predictions of the model agree well with 

available correlation data. Calculations of the rr+p (IT-, IT- ) distributione4) 

at 18. 5 GeV/c which have already been reported elsewhere, (“) are 

discussed in more detail. Those results showed deviations from data 

for large differences of rapidity where cross sections are small. 

This discrepancy suggests an obvious double excitation correction 

to the dominant single-excitation picture. We find that data are well 

accounted for if 7070 of the inelastic cross section is associated with 
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single excitation, and the remainder comes from events in which both 

beam and target particles form clusters. The 7/3 ratio was also found (12) 

to lead to a good representation of pp(.rr-, =-). The ratio of single to 

double excitation is tested by the reaction, n--P(IT-, TT-) where d’c/dy dy 
1 2 

is extremely sensitive to the presence of leading TT-! s. Results are 

- (42) presented here for pp(r-, IT ) and for TT*P(TT-, IT-). (9) 

Normalizing to cinel, we find that our model reproduces correctly 

the normalization of the two-particle distributions. Results of our 

calculations are compared with data in Fig. 1, 3, 4, 5, and 6. The 

agreement with experiment provides evidence that the pion secondaries 

are indeed strongly correlated at present machine energies, but in a 

well understood way, Correlations from final state interactions are 

minimized by the choice of TT TT , for which no strong resonance effects 

should mask correlations resulting from the production mechanism. It 

is therefore fortunate to see that the charge configuration which is most 

easily amenable for experimental study turns out to be of particular 

theoretical inter es. 

As reported previously, (42) for IT- production in pp collisions our 

approach reproduces correctly the values and energy dependence of 

<n>, <n(n-l)> (and f2 = <n(n-l)> - <n>‘) over the energy range 

10-30 GeV/ c. Further exploration of production mechanisms would 

follow from a measurement of the ratio <n(n-l )> / <n> 2 at high energies, 

since models differ widely on the energy dependence of this quantity. (22,23) 

:k In defining such a ratio, we arbitrarily consider most heavy novas as 
due to single excitation. In this case there is neither a neat kinematical- 
nor a clear dynamical separation between single and double excitation. 
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The success of our model in the 10-30 GeV/c range does not imply 

solid predictions at NAL or ISR energies. High mass excitations 

become more important at these very high energies, but the nova 

production cross section and decay multiplicity are not determined 

uniquely by the slow increase of <n> with energy, the only important 

energy dependent input to our model. Predictions for the single- 

particle distributions are safer, since their normalization is determined 

by the already established slow increase of multiplicity. ‘25) The 

normalization of d20/dyldy2 increases in proportion to ‘6 in fragmentation 

models. Predictions for NAL energies are given. These points are 

discussed in Sec. III. Moments higher than <n(n-l )> would, of 

course; also be interesting in the NAL ISR energy ‘domain. Cosmic 

ray results provide some hints of what to expect. (26,27) 

In Sec. IV we close with a few general remarks and predictions 

about other easily accessible meson correlations. Calculations are 

presented for K+p (K’, a-) where one also has an exotic system. 

II. Two-Particle Inclusive Distributions in the Nova Model, 

In this section, we discuss our model calculation of two-particle 

inclusive distributions at present machine momenta (10 to 30 GeV/c). 

For definiteness, we examine the specific reactipns rr*p(r-, a-), but 

most results are carried over easily to other’ processes. More details 

are given also of previously reported results (j2) on pp(rr- T-). The two 3 
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final pions are labeled with indices 1 and 2. The two-particle inclusive 

distribution is a function of 6 kinematic variables, which may be taken 

to be the two longitudinal rapidities of the final pions, y1 and y2, in 

the center-of-mass frame; two transverse momenta 1 pTi [ and 1 pT2 1 ; 

the angle $ between the two transverse vectors; and the center-of-mass 

energy 6. In this Section we focus on y1 and y2 dependence, integrating 

explicitly over 
2 2 

pT1 and pT2. Thus, the quantity analyzed here is 

d20/dyldy2. Remarks are made in Section IV concerning dependence 

On PTf PT2’ and 4. Energy dependence is discussed in Section III. 

A. Review of the Model 

As emphasized in the Introduction, the Nova model is 

a phenomenological approach which embodies three features abstracted 

from data on single-particle inclusive spectra. (334) We examine each 

of these features in succession. 

1. High energy collisions are termed “weakly inelastic” 

in that one of the incident particles often retains a large fraction of its 

center -of -mass incident energy. This fact is manifest in various ways. 

For example, in pp(p ) the final proton’ s longitudinal momen- 

tum spectrum is observed to be flat, (19,281 or even to be slightly 

peaked towards the kinematic limit 1 pL 1 = pL max. In pion 
9 

production processes, (9,181 an excess of -rr in n p(x-) is observed 

atyZ 2. This effect is seen in data displayed in Fig. 1, but shows 

up more dramatically when data are plotted versus x,or versus y for 
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small pT intervals. (38) The excess is associated with events in 

which the rTT- is quasi-elastically scattered, recoiling from an excited 

proton-like system (“cluster” or “nova”). Small inelasticity already 

implies some correlation among secondaries, (20) because secondaries 

decaying from the excited cluster share a fraction of center-of-mass 

energy which is substantially less than that which would be awarded 

by energy-momentum conservation alone. 

To represent small inelasticity in as obvious a fashion as possible, 

we use single cluster excitation diagrams sketched in Fig. 2(a) and (b). 

In addition, our fits (12922) to d20/dyldy2 demonstrate the need for 

contributions of the type shown in Fig. 2(c), in which both beam and 

target are excited in a given event. Each nova is represented by an 

excitation function p(M), where M is the nova mass. An observed 

pion in r+p(rr;?r-) or pp(r;~~-) is a decay product of one of the nova 

systems, but in r-p(~rir-) it may also be a through-going quasi- 

elastically scattered rr- (Fig. 2(b)). 

2. Single particle transverse momentum distributions 

are observed to be damped sharply, following a gaussian like dependence 

of the form exp(-XpT 2, , where X = 3 for large pT2, and X- 10 for 

small p T2 ( 5 0. 2). Although often neglected, the distribution in pT2 

has non-trivial implications for distributions in y. Indeed, at current 

accelerator energies, the mean <pT> is not small compared to the 
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average energy available per secondary. Thus, the fact that a fair 

fraction of the available energy goes into transverse motion reflects 

itself in narrow distributions in x or y. We observe that over the 

energy range 10-30 GeV/c, <pT2> Y <pL2> in the nova rest frame; 

this provides justification for our assumption that when clusters, 

produced with small inelasticity, decay by pion emission, the average 

decay distribution is approximately isotropic: (29) Anot her 

consequence is our assertion that the average number of decay pions 

n(M) is linearly proportional 
(30) 

to the nova mass M. 

3. A third important feature of single pion inclusive 

spectra is the observed rapid approach to (28) scaling (energy indepen- 

dence) for intermediate values of [x 1 ( (x 1 E= 0.2 to 0.6). These 

energetic secondary pions yet short of being leading particles, tend 

to result from decay of fairly low-mass novas.. High-mass clusters, 

which can be excited with increasing energy, populate small values of 

I I x . Rapid scaling is thus achieved if our low M excitation spectrum 

p(M) is energy independent and peaks at relatively small M. Energy 

independence at small M is supported by the observed 
(26) 

near constancy 

of o4 over the energy range 10 to 500 GeV/c; o4 is the four prong 

exclusive cross section. 

These three crucial features of machine energy collisions are 

systematized in the Nova model, where either the beam or target 

particle is quasi-elastically excited into a superposition of resonance 
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states which subsequently decay by sequential emmision, with an 

isotropic decay distribution in the nova rest frame. The mean pT 

of the pion distribution is related to the multiplicity of pions obtained 

from a nova mass M; this in turn fixes the normalization of do/ dy. 

Although a few additional specific technical assumptions are made in 

setting up the Nova-model (21) calculation,* the general shapes of 

predicted distributions do not depend sensitively on these assumptions. 

The crucial assumptions are those stressed above. Insofar as energy 

dependence is concerned, the way in which-we formulate the model 

leads to strong predictions for /-n(n-l)> in the NAL and ISR energy 

ranges. Energy variation is discussed in Section III, but seems 

immaterial for discussion of d2 o/dyldy2 in the energy range 10 to 30 

GeVic. Although perhaps obvious, we stress that the model is not 

built upon what would be called fundamental theoretical postulates. 

Rather, we abstract simple observed features from single particle 

inclusive spectra and then imbed them in a framework which is con- 

venient for further phenomenological analyses. Detailed calculations 

of shapes of single particle distributions are correct. Interesting 

tests are possible at the two particle inclusive level, where we can 

study whether additional dynamics is present, beyond that abstracted 

from the single particle spectra. Similarly our attitude toward single 

versus double excitation remains phenomenologically based (21) and no 

matter of principles. 

::: As must be true in all approaches even weighted phase space, 
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B. Parametrization 

Relevant diagrams are sketched in Fig. 2. A nova is 

characterized by three quantities : its excitation spectrum p(M), the 

mean number n(M) of decay pions, and the average decay distribution 

dD/d3F in the Nova rest frame. - In addition, when considering leading 

pion effects, we must specify the momentum transfer (t) or transverse 

momentum (p,) distribution of the leading particle. The t or pT 

distribution of the whole cluster is irrelevant when we examine pions 

which are decay products of a cluster. Because of the small value 

of the pion mass and small Q value in the decay, 
(21) the convolution of 

pT distributions for production and decay is controlled entirely by the 

decay distributions (31932b dos e 1 cuss leading particle effects in Section 

II, E. Here we concentrate on parameterization of single nova excita- 

tion graphs Fig. 2(a) and (b). 

For reasons given above, the average pion decay 

distribution in the nova rest frame is chosen to have the symmetrical 

(2. 1) 

2 112 
Here w = (p2 + ).t ) is the energy of the secondary TT in the nova rest 

frame; p2 = pT2 + pL2; and p is the pion mass. Parameter K is 

chosen to reproduce the correct average single particle pTL 
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distribution. (3,4) We determine a value K = 0.45 GeV/c, which 

corresponds to a typical Q value of 330 MeV/c at each step in the 

sequential decay of the nova. The distribution is normalized to unity 

by a. 

It will be noted that in Eq. (2. 1) the same parameter K 

controls both longitudinal and transverse momentum spectra, a result 

supported by our comparisons with data. The form of the decay 

distribution specifies a fixed average energy release per decay, so 

that the total number n(M) of decay pions is linearly proportional to the 

excitation mass (30) (M-MO). The proportionality factor is also 

related to the value of K, with reasonable values determined to lie 

in the range 2. 0 to 2. 5 GeV 
-1 

, After adjusting results to reproduce 

the correct mean multiplicity (12) in pp(r-) at 21 GeV/c, we find 

(2. 2) 

This is understood as an implicit average over all decay chains; MO 

is the ground state mass of the nova. Although the factor 2.1 was 

determined for proton novas, Eq. (2. 2) is also used for our pion and 

kaon nova calculations. Looking for key features, we minimize the 

number of parameters. 

In addition to Eq. (2.1), other forms for dD/d3c are possible. We 

also tried the expression (21) 
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This differs from Eq. (2.1) in that the factor w -1 
is absent on the 

right hand side. Here K’ = 0. 33 is different from K, for obvious 

reasons, but average quantities remain the same. Numerical calcu- 

lations were performed with both Eqs. (2. 1) and (2.3), and agreement 

was found, indicative of the fact that results in rapidity are not overly 

sensitive to the exact form for dD/d3; . All specific results reported 

here were done with Eq. 

a perfect representation 

we should perhaps use a 

of Eqs. (2. 1) and (2. 3). 

(2. 1). Neither Eq. (2.1) nor (2.3) provides 

of dcr/dpT2 . To achieve better agreement, 

sum of gaussians on the right hand side (33) 

Results in rapidity are insensitive to such 

precision; it is important but sufficient to reproduce the average 

behavior of do/ dpT2 . 

Rewriting Eq. (2. 1) in terms of rapidity, we obtain 

where y. is the rapidity in the nova rest frame and 2 m 
T = PT2 + p2 . 

(Here we use the relations p L =m T sinh y, and w = mT cash y,. ) 

For reasons given above, values of pT are essentially 

identical in the center -of-mass and nova rest frames. TO transform 
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rapidities, we use their convenient properties under Lorentz transfor- 

mat ions. We write 

(2.5) 

Here y is the center-of-mass rapidity. The (+) sign is taken for 

beamlike (e. g. meson) novas and the (-) sign for target novas. 

Nova rapidity Y is calculated from 

sl;nlr(y = Q 
+ 

where Q 
N is the center-of-mass momentum of the nova. 

9 N 
= (S~_~S(M~M:,+~~M~)~)~/~~ 

(2.6) 

(2. 7) 

Here Mp is the mass of the “spectator” initial particle. 

After integrating Eq. (2.4) over pT , we obtain 

The form is approximate because in practice the integral must be cut 

off at finite p 
T’ 

in keeping with energy and momentum conservation. 

We define A(M, y) to be the normalized nova decay distribution in 

rapidity in the center -of -mass. 
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(2.9) 

We turn next to the parameterization of our third 

quantity, the nova excitation spectrum p(M). This quantity is the 

differential cross section da /dM, integrated over momentum transfer, 

for production of a nova of mass M. Choice of a functional form for 

p(M) is necessarily somewhat ad hoc. (21) 
However, because of the 

averaging (integration) over M required in calculating various distri- 

butions, the distribution of secondary pions coming from nova decay 

is insensitive to details of p(M). Our form for p(M) rises from threshold 

(M=Mo) , peaks at Y 1 GeV above threshold, and falls in proportion 

to (M-MO)-’ for large M. As long as this general rise and fall of 

p(M) is maintained, distributions are not modified greatly. 

The asymptotic M 
-2 

behavior is suggested by Regge 

theory. (34) Given our determination that n(M) 0~ M, the Me2 behavior 

is also required in order that the mean pionmultiplicity grow in pro- 

portion to log s. This logarithmic property is already enough to 

guarantee a reasonable phenomenological description of single-particle 

spectra near x = 0. (25) However, two-particle distributions are sensi- 

tive to high mass excitations; therefore, our estimates of high M 

behavior are not guaranteed to account correctly for normalization 
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of d20/dy,dy2. 

The form for p(M) is different in general for baryon and 

meson Novas. The specific form we choose is (21) 

(2.10) 

The values p 
P 

= 2 GeV for proton excitations and p = 2.4 GeV/ c for 
IT 

pion excitations are found to give good agreement with both single- 

and two-particle inclusive spectra in pp(e-, IT-) and rrfp(a-, n-). we 

normalize our calculation to the observed total inelastic cross section 

at a given energy. This introduces normalization constants C 
CY’ 

In addition, to reproduce the fact that secondaries tend to follow the 

incident meson (an observed asymmetry of single-particle distributions), 

wesetC /C 
B P 

= 2, as in Ref. 21 and 22. 

If only single nova excitations contribute to q(n) (e. g. Fig. 

2(a) and (b) only), then the inelastic cross section is given by 

(2.41) 

and 

Note that <n> , the average number of pions, is independent of C . As 
0 

already stressed, (24) our keeping the same expression 811 the way to 

phase space limits in purely phenomenological. It enforces.the correct 

multiplicity but should not be given a dynamical Significance. Our crude 

spectrum ignores low energy resonances (p +, A+) . They do not contribute 

to the TF yield but we lump into single excitation cases in which the r(p) 

recoils as a, A) while exciting the other particle. 
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The quantity n(M) gives the average number of pions which 

decay from a nova of mass M. These pions must be apportioned 

among the three possible charge states, a procedure detailed in 

Section III. Here we denote by n:(M) the average number of negative 

pions expected from the decay of an cy nova of mass M. We introduce 

<n- (n- - 1)> 
cy cy M 

which is twice the average number of pairs of f~- 

expected from decay of an cy nova of mass iM. 

The contents of this subsection are summarized in the 

following expressions for the single nova contributions to da/dy and 

d2c/dyldy2 for TT- production in MlM2 (air-). 

These equations were used to obtain distributions presented in Ref. 22 

for ~T+P(IT;,- ). As remarked in that paper, the fact that both pi- are 

always associated with the same nova results in a marked tendency 

for d20/dyldy2 to peak at positive values of y2 when y1 is positive. 

To the extent that this strong feature is not observed directly in data 

for large values of 1 y1 j t i is obvious that, the two observed pi some- 

times originate from two different clusters. In a configuration such 
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as that shown in Fig. 2(c ), the two novas may decay with pions being 

emitted in a back-to-back fashion. In the next subsection, we discuss 

our parameterizations of Fig. 2 (c). 

C. Double nova Production. 

If we insist that one TT- is produced with large [ y 1 , kinematics 

suggest that it originates from a light fast nova. Because the probability 

is small for a nova with small M to give two TT , it is likely that if a 

second r-is observed, it will have come from a different cluster, 

moving in the opposite direction from the first. Two particle distri- 

butions d20/dyldy2 with one y large are sensitive to this type of 

double nova excitation (as previously remarked. (22 1 ) It remains 

however, that single nova excitation (one nova per event) is important. (35) 

The width (or dispersion) of do/dy is determined by low 

mass novas, which can seldom produce two pions of the same charge. 

Heavier novas, which can give two TT-, are restricted by kinematics to 

relatively small values of y. Thus, decay pions from heavy novas 

also occupy the small y region. To the extent that single nova effects 

dominate , d20/dy1dy2 will be more narrow than da/dy. This is 

supported by the data in Fig. 3, for small values of yl. However, 

viewed as a function of y 2, d20/dyldy2 .at large y1 is as broad as 

do/dy, as expected if two cluster contributions are now significant. 

Our physical picture then is one in which dominant single nova effects 
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supply the bulk of the distributions, particularly at small y. Their 

contribution is supplemented by double-nova effects, whose 

role is particularly important in d20 /dyidy2 when either or both y 

are large. 

When two clusters are formed in a given event, it is not 

obvious that we should describe their excitation and decay in the same 

way as we handle the single nova case. However, to the extent that the 

masses of the clusters are small, their pion yields should be similar 

to those of novas formed in a single excitation configuration. We 

therefore adopt the same p(M), n(M), and so forth. 

For the double excitation contribution to oinel, we write 

(2.15) 

Here NT1 and M2 are masses of the two novas. Function R(M 
1’ M2) 

scales the double excitation cross section as compared to the single 

excitation contribution, Eq. (2. 11). We find it adequate to take a 

constant value for R, followed by a sharp cutoff (R = 0) if momentum 

transfers t(M 1’ 
Iz/T2; s) are larger than 1 (GeV/c)2 . 

For the double excitation contribution to <n>, we derive 
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For n’p(r-), pp(r-), K+p(rr-), therefore, 

(2.17) 

where (T 

=zd 
+ ~~~~1 . The corresponding double excitation 

contribution to do/ dy is 

The decay functions &(M, y) are the same as those discussed previously 
1 

(Eq. (2.9)), except that in the kinematics the spectator mass is now that 

of the bachelor nova. The two terms appearing in Eq. (2. 18) represent 

the fact that the observed TT may originate from either of the two clusters 

formed in the event. 

For d20/dyldy2, we have three terms, which refer to our 

associating the two observed r to two different clusters or to the same 

one. Specifically, 
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Furthermore , 

D. Normalization and Calculated Distributions. 

The necessary ratio of o (2)/o(i) [c. f. Eqs. (2.11) and 

(2. 15)‘] is determined by fitting shapes of distributions for r’p(r, TT-) 

shown in Fig. 3. The essentially perfect agreement with data is 

obtained with the value o w,(p = 3/ 7. As mentioned above, the 

double excitation ” correction” to dominant single excitation is needed 

in order to reproduce the width of d20 / dyldy2 when one rapidity is 

kept large. 

The single particle distribution d’a/ dy for ~“p (r- ) at 18. 5 

GeV/ c is shown in Fig. 1. Again, agreement is excellent. Given our 

determination of o (29 p , we normalize our calculation to the 

observed inelastic cross section of 21mb. Thus, normalizations of 

do/dy in Fig. 1 and d20/dyldy2 in Fig. 3 are predictions of the model. 

A similar procedure was pursued 
(12) for pp(n;~i- ), a 
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cleaner process to analyze inasmuch as only proton novas contribute 

and the single particle distribution do/dy is symmetric about y = 0. 

Again, a 7/3 ratio of single to double excitation was found to pr&de 

excellent agreement with the Michigan State pp data. Results from 

Ref. 12 are reproduced here as Fig. 4. Also shown in Fig. 4 is the 

2 explicit contribution from double excitation to d o/dyldy2 versus 

y2, for yi = 2.0. The pp calculation is normalized to the observed 

pp inelastic cross section of 30 mb at 21 GeV/c; normalization of 

do/dy and d2D/dyldy2 are predicted correctly. (12) 

Two particle distributions are more narrow than single 

distributions, and thus give obvious indication of strong positive 

clustering (correlation) of secondary TT 33 . However, this effect 

simply reflects the fact that d20/dy dy 
1 2 

receives contributions from 

heavier nova events yielding at least two TT- (6 prongs or more in pp 

or IT’S), whereas do/dy is populated by a larger sample of events. 

Over the energy range 10 to 30 GeV/c, the four prong cross section 

(only one TT- ) is particularly large. In terms of the model, production 
- 

of two rIT- requires relatively heavy clusters, thus narrow distributions 

in y of the decay pions. From a purely experimental point of view, the 

same conclusion may be reached by comparing the width of d20/dyldy2 

to that of do/dy limited to events in which at least two TT- are found. 

Widths are then comparable. (12) 
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Another interesting way to examine clustering is to define 

an associated multiplicity (12,361 

Lh(h-l) $j 

<h&I> = H dr 
j 4’ (f2v++) 

= 
ok 

@+I 

(2. 21) 

Because the averaged double distribution is narrower in y than the 

single particle distribution, Eq. (2. 21) should have a maximum near 

y = 0. Results of our calculations are compared with Notre Dame 

data in Fig. 5. Agreement is excellent. This again indicates, 

through a slightly different test, that our description of the clustering 

effect is enough to explain observed positive correlations among 

IPS. The observed effect, particularly marked between distributions 

requiring only one versus those requiring at least two IT-, is due to 

the relative importance of low mass novas. This effect disappears 

slowly with increasing n, when one compares distributions limited to 

multiplicity with more than n and n + 1 r ‘s respectively. 

E. Leading Particle Contribution. 

If one of the observed secondaries can be a quasi-elastically 

scattered particle, as in r-p(r-), an additional corresponding term 

should be added to the single and double distributions. The leading 

particle rapidity distribution is obtained in terms of the excitation 

spectrum of the recoil nova; it reads 



(2. 22) 

The center of mass momentum is denoted by k; and MO, the recoil 

2 
nova mass, is readily evaluated in terms of y and p T , as 

2 
with MT = 

For phenomenological reasons we have taken 

(2. 23) 

(2. 24) 

with B = 4 GeV 
-2 

independent of M. 

At fixed y, different values of pT2 correspond to different values of 

M. Since y depends very strongly on pT2 at fixed M, no prominent 

quasi-elastic peak is obtained (Fig. 1). In order to see the peak clearly, 

one has to consider separately small pT2 intervals. (18) 

Keeping only single nova excitation and normalizing the 

calculated distribution to the total inelastic cross section we obtain 

too strong a leading particle contribution. 
(21) This is another 

indication that some double excitation is also present. Granting 

to single excitation (as for pi 
+ 

only 7070 of Crnel p) we decrease the 
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calculated value of the leading pion distribution and obtain a good 

agreement with the data shown on Fig. 1. Our estimate of the leading 

particle effect could be an overestimate. (17) The ratio o W,J1) 

which we used is a compromise which could be modified were the 

shape and normalization of the leading particle contribution to change 

with more accurate data. (37) As already emphasized (21) it would 

be very interesting to examine data on the slow proton recoil distri- 

bution which should offer the most reliable determination of the actual 

strength of single excitation. 

To obtain do/dy for up we add three contributions, 

from Eqs. (2. 13), (2. 18), and (2. 22). Our calculation for IT-~(Y), 

shown in Fig. 1, is normalized to oinel (rr+p ) ! The relative normali- 

zation for r*p is a prediction of the model. The discrepancy with data 

seen for y < o (for IT-P) is related to charge exchange effects neglected 

in our calculation, (21) Such effect which should fall with increasing 

energy (as opposed to the large difference found at low positive y) 

are much larger for r-p than for n+p processes. 

The leading particle also contributes to double distributions. 

Indeed for y1 > 2, the observed TT- is in general the quasi-elastically 

scattered TT . One finds 
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where *P (y2B 
MO) is the pion distribution obtained from the proton 

nova and n (MO) is the average number of JT- from a proton nova of 
P 

mass M o. Depending on the magnitude and sign of yl, only one term 

in (2. 25) may be significant in the double distribution. 

Upon including contributions from Eqs. (2. 14), (2. 19), and 

(2. 25), we obtain results presented in Fig. 6. Although overall 

agreement with data is less spectacular than for ~+p and pp, results 

are acceptable for y > -0.8. For y -C - 0. 8, normalization difficulties 

are particularly evident. However, these can be traced to the prob- 

lem which we experienced for y < 0 in db/dy, and which we discussed 

above. Improving parameters was not attempted. 

Our results for JT*~ and pp processes show that the simple 

features we abstracted from single particle inclusive data and imbedded 

in the nova framework are fully sufficient for reproducing more detailed 

information provided by two particle inclusive reactions. The clustering 

effect (small inelasticity) inferred from single particle spectra plays 

an especially significant role at the two particle inclusive level. 

This is an important result. , but, at the same time, we may conclude 

that beyond confirming features of single particle data, present data 
2 

on d (T /dyldy2 do not reveal any new specific dynamic phenomenon. 



-31- 

F. Correlation Function, 

It may seem practical to summarize the information which 

is contained in the double distributions in terms of a correlation function 

C(Y,, Y2)’ However, its interpretation may not be too transparent 

at energies where the mean multiplicity of the observed secondaries 

is 1 or Z! Consequently the shape and normalization of the correlation 

are quite sensitive to its definition. The conventional definition is 

(2. 26) 

At present machine energy however, the second term measured in 

pp(r ) collision for instance, has a strong contribution from 4 prong 

events which make no contribution to the first term. As a result one 

merely sees the difference between two large and weakly correlated 

terms. This can hardly be called a correlation in a dynamical sense. 

Calculating C(yl, y2) from the double and single distributions is a 

very inefficient way to display the available information. 

At the same time (2. 26) is too sensitive to the type of 

reaction or particle species. The first term normalizes to <n(n- i)> 

2 when the second one normalizes to Q-G ,and it is merely the charge 

dependence of these normalizations which leads to such different 

looking correlation functions. (9-11) Indeed from Table I we see that 

C(Y,J y2) for r-p h-, IT-) should be about three times that of 
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+ - 
rp(r I TT-) even though the basic production mechanisms are the 

same in both cases. It seems appropriate to at least partly eliminate 

such effects, despite all the evils attached to still a new definition for 

the correlation function. We therefore define 

(2. 27) 

We have computed this correlation function and compared it with 

the data. (9) As expected from our agreement with data in Figs. 1, 

3, and 5 we reproduce very well the observed a priori puzzling 

curves . The correlation curves are shown on Figure 7. We have 

used (2. 27),and Cty,, y2) integrates to zero. This would also be the 

case were we to use (2. 26) with a Poisson distribution as a good 

approximation. 

III. Pion Multiplicity and Normalization of Correlations. 

A. Charge Ratios. 

Novas are postulated to decay by sequential emission of 

pions, a property in keeping with their resonance like character. 

The average number of decay pions is determined by the nova mass, 

Eq. (2. 2). Quantity n-(M) in Eqs. (2. 13)and (2. 18) is the average 

number of rr- coming from all decay chains of a nova of mass M; 

<n-(n- - 1)> 
M 

in Eq. (2.14), is twice the average number of pairs of 
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Tr . For very large multiplicity, a statistical limit may be approached 

in which (~+IT-) pairs are twice as frequent as (TOT’) pairs. Extimat es 

i- 
of the relative number of IT , IT-, and TT’ at low multiplicity depend 

crucially on the total charge of the nova. Values can be bounded by 

isospin arguments, but are nonetheless somewhat arbitrary. Results 

given below are representative of typical decay chains. The appropri- 

ateness of our procedure is verified by the fact that we predict approxi- 

mately the correct normalization of do/ dy for n ~(TF- ) at positive y 

in terms of that for r+p(r-) (c.f. Fig. 1). 

For large multiplicity, we consider a binomial distribution 

with 2/ 3 probability for a (r+rr-) pair and I/ 3 probability for a r”rro) 

pair. A straightforward calculation gives 

(3.1) 

for the average number of IT-. Here N E n(M) is the average number 

of pions of all charges (taken as n(M) = 2.1 (M-MO) in Section II). 

The average number of pairs of TT- is 

<h-[h-” I))y = ’ ‘; z’ 
(3.2) 

For low multiplicity (small M), charge effects are relevant. 

Proton and r+ novas produce fewer TT- than Eq. (3. 1) and rr- novas 

give correspondingly more. For positively charged novas, reasonable 

interpolations are 
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(3.3) 

and 

(3.4) 

Comparisons with some explicit decay chains show that these approxi- 

mations are quite decent. In calculations of r’p (IT;*-) and pp(r,rr-) 

reported in Section II, Eqs. (3. 3 ) and (3.4) were employed. 

For negatively charged novas, one extra TT- should be added 

to the right hand side of’ Eq. (3. 3), a result obtained most simply 

from a consideration of charge conservation. Thus, for the number 

of rFT- from TT- novas, we use 

and 

(3.5) 

(3.6) 

Our estimates are crude, but from an examination of 

explicit decay chains, we estimate a 20% reliability in <n(n-l)>M 

for N 5 6, adequate for our purposes. Inasmuch as all quantities of 

interest are computed averages over n(M) p(M) or Cn(n-iPMp(M), 

a more refined approach is not justified until p(M) is given a more 
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exact form. 

As described in Section II, Eqs. (3.3) to (3.6) lead to good 

agreement with shapes and normalization of da/dy and d2c/dyldy2 

at fixed s. We now turn to the energy dependence of <n> and 

<n(n-l )> , quantities which normalize do/dy and d2cr/dyidy2 (c.f. 

Eqs. (1. 1) and (1. 2), respectively. The quantity Kn(n-i )> is more 

model dependent than the shapes of spectra. 

B. Energy Dependent e . 

Our calculated values of en> and <n(n-l)> are compared 

with 18. 5 GeV/c r*p data in Table I. Calculated values of <n> and 

f2 = [ <n(n- 1)> - <n> 2l are compared with pp data in Figs. 8(a) and (b). 

Agreement with ITCH and pp data in the 10-30 GeV/c energy range is 

quite respectable. 

As remarked in Section II, our model is constructed to give 

a mean multiplicity <n- > which grows logarithmically. Indeed, at 

asymptotic energies, we predict <n-> -0.7 log s. For <n(n- I)>, the 

nova model, in common with all the diffractive fragmentation models, (2,29) 

predicts an asymptotic increase with energy of the form <n(n- 1)> cc G. ” 

By contrast, in multiperipheral (38939) and other weak correlation 

2 (8) models <n(n-l )> 0~ log s, or log s. 

Referring to our discussion of the nova model in Section II. A, we 

observed that the prediction <n(n-l)> 0: 6 is actually not demanded 

by our phenomenological input. Beginning with the fact that symmetry 

<n(n-1)& p(M) goes to a constant at large M; thus 
= 4%. 
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in the nova decay frame suggests n(M) a: M, we chose p(M) oc Me2 to 

guarantee <n> 0~ log s (and an asympotically energy independent cinel). 

However, symmetry is almost forced on us by small inelasticity and 

the universal pT dependence only for reasonably small plab (<iOO GeV/ c), 

i. e. for M not infinitely large. We have no way of knowing whether 

n(M) 0~ log M (and p(M) w M-i(log M)-i ) would be more appropriate 

at very large M. (40) This form would be suggested if the “decay” 

takes on a one-dimensional character 
(20) 

in the nova rest frame, as 

might be appropriate at very large s where. <pL> >> <p T>’ 

For reasons of phenomenological simplicity, we stick to 

p(M) = M 
-2 

, for all M at all values of s. Thus, we are able to make 

predictions not only for asymptotic s dependence of <n> and <n(n-I)>, 

but we can also give specific values for these quantities in the ISR and 

NAL energy ranges. Some support for the relevance of fragmentation 

models at ISR energies comes from the observation that in pp collisions 

the large (r+/=-) ratio is consistent with being energy independent at 

0.25 < x 51 0.3 between 24 and 500 GeV/c. 
(28, 41) 

This observation 

has, however; very little implication for multiplicity growth. 

Predicted values for <n> and <n(n-l)> for r*p at 100 GeV/c 

are given in Table II. Here n always refers to rr- production. For pp 

collisions, results given as a function of energy in Figs. 8(a) and (b), 

are contrasted with available data. (4%ote that our p redicted multiplicity 

distribution, which is narrower than Poisson (f2 4 0) in the energy 

*If this is true f2 would increase logarithmically after an inital sharper 
rise. 
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r=xe P lab 
< 30 GeV/c, has become broader than Poisson (f2 Y 0) 

by 100 GeV/c. This occurs for both pp and IT*P. 

In Fig. 8, our values for <n> and <n(n-I)> are in reasonable 

agreement with preliminary Serpukhov data (43) at 69 GeV/c. For 

<n>, we are one to two standard deviations too high in comparison 

with Echo Lake data (26344) and too low in comparison with ISR data. (45) 

However, both experiments are subject to some systematic error. 

Our most obvious disagreement with present data is seen clearly in 

Fig. 8(b), where we are a factor of 5 or 10 standard deviations too 

high in comparison with Echo Lake results (44) on f2 at 200 GeV/c. If 

these Echo Lake data are correct, they would seem to rule out 

absolutely the predicted s dependence 4n(n-l)> = &. As remarked 

above, this would eliminate all pure fragmentation models, (2, 29) unless 

they abandon claim on present machine energy results. Our quantitative 

predictions for <n(n- 1)>, based on specific fragmentation model 

which reproduces data in the 10-30 GeV/c range very well, underscore 

the crucial importance of early measurements of 4n(n-l)> at NAL 

and ISR. 
(22, 23) 

More important than statistical accuracy is the obvious 

need to avoid systematic bias for cross-sections with large prong 

number, a bias which could significantly raise or lower 4n(n-l)>. 

IV. Other Correlations and Discussion. 

The general ideas and specific procedures described in Sec. II 
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and III can be applied easily to other cases to check if the picture of 

particle production which has been incorporated into the Nova model 

is generally applicable. We therefore comment on a number of 

different correlation experiments. 

Our detailed study of two TT- correlations was motivated by the 

availability of experimental information and supported by the special 

interest offered by an exotic system. There are no strong final 

state interactions superimposed on the production process proper. 

This latter point would also apply to K’p(K’, - 7i ) reactions. The 

relatively low yield of K” from proton novas, 
+ 

compared to K novas, 

causes the distributions to be shifted to positive kaon rapidities but, 

otherwise, many features, already found in two TT- correlations, 

should also be met. We have calculated double rapidity distributions 

for the reaction K’p(K’, TT- ) at 16 GeV/ c and present them in Fig. 9. 

We have used the equations of Section II and III. The number of K” 

obtained from K+ and proton novas respectively are taken to be (46)- 

k0 

0 
\ 

Hk+ Y = x 

(4. 1) 

Where Mth is the threshold mass for decay of a proton into a K” and 
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IX+ system. The Kaon excitation spectrum is assumed to have the 

same general shape already used for pion and proton excitations. 

Just as for pion induced reactions, the ratio CK/C is 2. We 
P 

present this calculation in order to stimulate a more detailed com- 

parison with possible data. Hypercharge exchange should provide 

relatively larger correction terms than those met with pion induced 

reactions (Fig. 1). 

Correlations for r+=- or gore- systems would be interesting. 

They should show some resonance effects but confirm the main 

features already found for two pions with the same charge. At 

present machine energy IT+IT double distributions will be normalized 

at a much larger value. Correlations between final baryon and 

meson (or two baryons in pp collisions) would also be extremely 

useful. They would in particular provide further insight on the leading 

particle effect. 

The use of rapidities instead of the Feynman scaling variable x 

has some obvious kinematical advantages since the peak at small 

rapidities is compressed into an even sharper peak in an (x 
1’ x2) 

distribution. On the other hand, the x variable is better for examin- 

ing leading particle effects because of the more accurate determination 

of the nova mass for fixed x, expected after averaging over p 2 
T’ In 

any case the strongly peaked shape of the two pion distributions in 
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x1 and x2 may show directly some interesting features. (47) Because 

of our success with the rapidity distribution we expect an equally 

good quantitative representation of the main features when displayed 

in terms of x I and x 2’ In particular we may draw contour maps 

in x 1’ x2 for a 3 dimensional presentation of the logarithm of the 

inclusive double distribution. It is remarkable that at 16-20 GeV we 

obtain an approximately pyramidal structure at relatively low x 

values with roughly planar surfaces in the separate quadrants 

(x1 ‘< 0; x2 >< 0). 

Our model does not predict dynamical correlations between the 

transverse momenta of the secondaries (two IT- in section II). The 

nova decay is statistical and the inclusive distributions approximately 

factorize in y and pT2. As a result d2c/dpk, dpc2 should generally 

peak at p2 
T2 

= 0 for any small value of p2 
T1 * 

Nevertheless, if we 

associate secondaries with large pk to long jump decays, (33) some 

correlations could show up. Since long jump decays are relatively 

infrequent down each decay chain, the p2 
T2 

distribution at fixed and 

relatively large p 2 

Ti 
should be narrower then when averaged over all 

observed p2 
Ti 

values. In general however little correlation is expected 

besides that imposed by energy conservation. 

Correlations in 4 have been studied in several cases already 

K+p(KO, r-)(iO,) K-p(KO, ~-)‘~)and pp(n-, T-~!i2j49) In all reactions 
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little correlation in o has been observed beyond that expected from 

phase space considerations. Reported results are in agreement with 

what expected from the Nova model. (49) This may test our sequential 

decay picture but the observed features are presumably even more 

general. 

As PT2 is. increased, the distribution should fall more rapidly in y, 

at least in the range of validity of Eq. 1 (pc 4 0.3). Thus, the 

rapidity correlations restricted to larger pc (pk Y 0.1) should be much 
2 

stronger (fall off more sharply with y) than those for smaller p T’ 

This expectation is almost obvious from the single particle rapidity 

distribution as a function of pc . This effect is observed experiment- 

ally. (9 ) 

In conclusion, it appears that the small inelasticity, rapid scaling 

and universal p 
2 T distributions observed at present accelerator energies 

are adequate for understanding the key features of correlation data. 

No further dynamical feature seems to be of any relevance within 

present accuracy. The Nova model, which embodies this features 

and provides a practical calculation scheme, appears successful. 

As already stressed, measurements of <n>, and in particular of 

<n(n- I)> , performed with increasing energy would provide extremely 

useful information. The strong clustering effect, ascertained at 

present machine energy, may continue to hold at NAL energy or 

gradually disappear into a multi-clustering mechanism with weaker 

correlations which could become dominant at much higher energies. 
- 
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FIGURE CAPTIONS 

Figure 1 Single particle inclusive rapidity distribution for 

-rr*p(rr-) at 18. 5 GeV/c. Data are from Notre Dame (Ref. 9). 

Solid curves are Nova model calculations described in the text. 

Calculations are normalized to the IT’S inelastic cross section: 

21 mb. The relative normalization of the two distributions is 

a prediction of the model. The difference between the two sets 

of data at large negative rapidity (proton fragments) is due to 

charge exchange effects not included in our model calculation. 

We also did not include some rho production obviously effective 

at large rapidity. 

Figure 2 Three contributions to the inelastic cross section, In (a) 

an incident meson is excited into a meson nova. The incident baryon 

loses momentum but is not excited. In (b), the incident baryon is 

excited into a baryon nova but the meson is quasi-elastically 

scattered. In (c), both meson and baryon are excited, As a first 

approximation we keep only terms involving no quantum number 

exchange. 

Figure 3 Two TT- inclusive distributions observed in 

+ 
‘iT P(6 T-) at 18. 5 GeV/c. Data are from Notre Dame (Ref. 9). 

d2c/dyldy2 is plotted versus y2 for the following intervals of yl: 
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On the left 

a) -0. 2<y1<0. 2; b) -0.6<yl<-0. 2; c) -1. O<yl<-O, 6; d) -1. 4<y1<-1. 0; 

e) -1. 8<y1<-1.4; f) -2. 2<y1<-l. 8 and g) -2. 6<y1<2. 2. On the right 

h) 0. 2<y1<0. 6; i) 0. 6<ylCl; j) l<yI<l. 4; k) 1.4CyCl. 8; 

1) 1:8<yl<2. 2; m) 2. 2<y1<2. 6 and n) 2. 6<yi<3. 

Solid curves are obtained from the Nova model with 7070 of 

(5 I 
inel 

associated with single nova excitation ,Fig. 2(a) and (b)) ; the 

rest is double excitation (Fig. 2(c) ). Only some of the curves have 

been drawn. 

Figure 4 Experimental distributions and Nova model calculations 

for ppb-, TT-) at 21 GeV/c. Data are from Ref. 12. Double 

distributions are plotted versus y2 for values of y1 in the intervals 

indicated. Good agreement is obtained with the same 7/3 ratio, used 

for IT+~(IT-, r- ). The dashed curve represents the double excitation 

contribution which is obtained for 1. 6<y1<2. 4 with IT- in a back to 

back configuration. 

Figure 5 Distributions for TYP(IT-, IT- ) at 18. 5 GeV/ c. Data from 

Notre Dame (Ref. 9) are plotted for the following interval of yl: 

On the left 

a) -0. 2<y1 CO. 2; b) -0. 6<yIC-0. 2; c) -1. O<y4<-0. 6; d) -1.4<y <-l-.0; 
1 

e) -1. 8<y1<-1. 4; f ) -2. 2<yI<-I. 8, and g) -2.6<y,<-2. 2. On the 
- 



right: h) 0. 2<y1<0. 6; i) 0. 6<yl<i. 0; j) 1. O<yl< 1.4; k) l.4<y1<1. 8; 

1) 1. 8<y1<2. 2; m) 2. 2<y1<2. 6 and n) 2. 6~~~43. 0. 

Theoretical curves are drawn for y1 = 0.4, 1. 2, 1. 6, 2. 0, 2.4 

and 2. 8 on the right for y1 = 0, , -0.8, -1. 2, -1. 6, -2. 0 and -2.4 

on the left. 
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Discrepancies can be related to charge exchange effects as 

already evident on Fig. 1. Normalization as well as shapes are 

predictions of the model. 

Figure 6 Associated multiplicity, as defined in the text, computed 

for TT- production in IT+P collisions at 18. 5 GeV/c. The curve is 

a prediction of the model. Data points are from Ref. 9. The 

agreement thus met contributes to show that the clustering 

effect, already inferred from the analysis of single particle 

distributions, is enough to predict the observed correlation effects. 

Figure 7 The correlation function C(y,, y2) as defined in the text 

(Eq. 2, 27 ) plotted versus y2 for the following values of y1 

Y, = -2. 0; -0. 8; 0; 0.8 and 2. 0. The strong positive correlation 

when both rapidities are small results from our associating the 

two IT- with a heavy nova. 
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Figure 8 (a) Mean number of TT- for inelastic pp collision as a function 

of laboratory momentum. Data are from Michigan State (Ref. 12). 

Serpukhov (Ref. 43), Echo Lake (Ref. 26)‘and ISR (Ref. 45). For 

both Serpukhov and Echo Lake, we use en’> = 0,5(<n 
ch > -2) 

and for ISR we take en-> = <no>, assuming that all y rays come 

from rro decay. The solid curve is a’prediction of the Nova model 

as described in the text. The mean multiplicity is severely 

determined by the p; and y distr ibit ions. 

Figure 8(b) Quantity f2 z. <n-(n- - 1)> - <n->2 as a function of plab. 

Both numbers refer to inelastic collisions. The solid curve is a 

prediction of the Nova model. Echo Lake and SerIjukhov points 

are derived from prong cross sections. Were our disagreement 

with Echo Lake considered serious, it would mean that the pion 

yield of very large nova cluster ceases to be linearly proportional 

to the excitation mass as we assumed it to be. 

Figure 9 Double rapidity distribution calculated for the reaction 

K+pW”, rr- ) at 16 GeV/ c. Quantity d2cr/ dy.,,dyK is plotted 

versus y, for four different values of yK. These distributions 

are presented as an illustration of the trend which should be 

observed, since our treatment of kaon production from a proton 

nova involves extra assumptions. The transverse motion of 
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the nova, no longer negligible here, should also give some extra 

effect on the kaon rapidity distribution. 

TABLE I 
+P “‘P - 

I Th 

T-p- 
:n-(ii-1 )> I 1. 31 

Exp I Th 
I 

EXP 
I 

<El/ 
1.27ztO. 05 

I 
3.49 

I 
3. 55&O. 10 

I 

Caption for Table I Average values for 

rip at 18. 5 GeV/c. Data are from Ref. 9. All numbers are 

computed with respect to cr. me1 ’ 
Specifically elastic two prong events 

are subtracted from o2 before calculation of <n->. 

TABLE II 

\ 

100 GeV/c = +P T-P 

<n-> 2. 31 3. 27 

, 
<n-(n--l)> 6.86 11.33 
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